职称:教授

电话:010-62787498

E-mail address:mrwang@tsinghua.edu.cn

个人简介

王沫然,博士,清华大学长聘教授,博士生导师。

主讲本科生专业基础课《传热学(英)》 (2015至今)、《传热学》(2011-2014)、本科生全校性任选课《Matlab与科学计算》(2012至今)、研究生专业课《微纳渗流及多尺度模拟》(2016至今);合教研究生课《流固热耦合及应用》、《现代力学与热科学进展》和《微纳米力学》等。出版教材《Matlab与科学计算教程》,获得清华大学优秀教材奖;2015年获得清华大学优秀SRT指导教师奖;2014年获得清华大学优秀班主任奖和优秀访问学者奖(指导教师);指导学生多次获得国家奖学金及国际优秀奖学金。

王沫然教授课题组正招收微尺度流体力学与传热传质方向的博士和硕士研究生,以及交叉学科(力学、热学、物理、化工、环境、地质、石油、材料等)背景的博士后研究人员。欢迎热爱科学、愿意投身科研的有志青年联系:010-62787498,mrwang/at/tsinghua.edu.cn

教育背景

1999 清华大学工程力学系 学士学位

2004 清华大学工程力学系 博士学位(博士论文:微纳尺度气体流动和换热的Monte Carlo模拟)

工作履历

2004-2006 美国约翰霍普金斯大学,博士后 (Postdoctoral Fellow)

2006-2008 美国加州大学戴维斯分校,博士后 (Research Associate)

2008-2011 美国Los Alamos国家实验室,奥本海默学者 (Oppenheimer Fellow)

2007-2011 美国约翰霍普金斯大学,访问科学家 (Visiting Scientist)

2018-2019 美国普林斯顿大学,访问教授 (Visiting Professor)

2019 德国亚琛工业大学,访问教授 (Visiting Professor)

2011-至今 澳门所有娱乐官方网站链工程力学系,教授

学术兼职

学会会员:ASME(2003至今),APS(2005至今),AGU(2009至今),Interpore(2013至今,lifetime member),中国力学学会,中国工程热物理学会,中国化工学会,中国地质学会,中国航空宇航学会

国内学术服务:国际多孔介质学会中国区(InterPore China)主席、兼任力学学会流体力学学会渗流力学专业组委员会委员、电磁流体力学专业组委员、化工学会过程模拟及仿真委员会委员、地质学会纳米地质委员会委员、航天微推进技工作组委员,担任中石油勘探院提高采收率国家重点实验室学术委员会委员和黑龙江省油层物理与渗流力学重点实验室学术委员会委员,担任国家财政部、国资委、科技部、基金委、JK委以及留学基金委等机构的评审委员会成员。

国际学术服务:担任国际多孔介质学会(Interpore Council Member, Chapter Committee)学术委员会委员及奖励委员会(H&A)委员;担任美、欧、澳等国家自然基金外审评审人和美国能源部及NASA外审专家

期刊任职:

· International Journal of Mechanical Sciences编委(Associate Editor)ASME出版,SCI

· Journal of Fluid Engineering-ASME编委(Associate Editor)ASME出版,SCI(2014-2022)

· Journal of Geophysical Research-Solid Earth编委(Associate Editor)AGU出版,SCI(2014-2022)

· Energy编委(Associate Editor)Elsevier出版社,SCI(2012-2017)

· Journal of Porous Media编委(Associate Editor)Belgellhouse出版社,SCI

· Journal of Colloid and Interface Science编委(Editorial Board Member)Elsevier出版社,SCI

· Energy Science and Engineering编委(Editorial Board Member)Wiley出版社,SCI

· Transport in Porous Media编委(Editorial Board Member)Springer出版社,SCI

· Special Topics & Reviews in Porous Media编委(Associate Editor)Belgellhouse出版社,SCI

· Energies编委(Editorial Board Member)SCI

· Advances in Mechanical Engineering编委(Editorial Board & Advisor Board Member)SAGE出版社,SCI(2008-2019)

· Colloid and Interface Science编委(Editorial Board Member),SCI(2015-2019)

·《应用数学与力学》编委

·《计算物理》编委

·《Petroleum》编委

会议任职: 多次担任微流体力学、微纳传热、热力学及非常规地质力学相关国际系列会议的科学委员会委员或组织者。

研究领域

研究方向:

1.微尺度流体力学及界面输运(流动、扩散及能量传递)

2.多孔介质渗流及热-流-固耦合(非常规能源、环境、人体)

3.跨/多尺度模拟(时空多尺度)

4.复杂流体(电动、流变、相变、胶体、软物质等)

5.传热物理及热管理(量子能量输运和转化机理及非平衡热力学)

研究概况

主持国家级科研项目十余项,包括:

l 超浸润智能流体微观渗流规律与高效驱替机理,2020-2025,重点研发计划课题

l 岩心微纳尺度流动机理研究, 2017-2020,国家重大专项课题

l 精密轴系润滑剂微渗流行为与调控方法,2019-2022,自然科学基金

l 纳米孔隙介质中气体流动的流体力学与孔弹性耦合效应研究: 实验与多尺度模拟, 2018-2020,自然科学基金

l 复杂流体液滴在热-流-电动多机制耦合作用下传递的介尺度模拟, 2017~2019,自然科学基金

l 非均匀带电微孔介质内电渗流的多物理输运机理研究, 2017-2020,自然科学基金

l 微通道内微纳液滴运动的多尺度模拟,2014-2016,教育部基金

l 微纳电动流体的输运机理及应用, 2012-2015,自然科学基金

承担企事业科技发展项目十余项,包括:

l 砂岩储层微观剩余油动态表征及孔隙渗流模拟方法研究,中石油科技发展项目,2020-2022

l 聚合物微球与表面活性剂复合驱微观渗流规律及提高采收率机理研究,中石油科技发展项目,2019-2020

l 特高含水后期水驱相渗计算方法与剩余油启动机制研究,中石油科技发展项目,2019

l 聚合物微球调驱剂力学性能表征及调驱数学建模,中石化科技发展项目,2018

l 聚合物驱微观流动模拟功能与计算性能测试,中石化科技发展项目,2017

l 特/超低渗透油气藏数字岩心渗流通道尺度效应研究,中石油科技创新基金,2015-2017(结题优秀1/50)

l 超低渗致密油藏渗流多尺度数值试验,中石油科技发展项目,2015

学术奖励与荣誉

2020~ 世界排名前2%科学家(美国斯坦福大学评选)

2019 国际多孔介质学会Interpore P&G Award for Porous Media Research

2019 国家高层次人才特殊支持计划—创新领军人才

2018 科技部创新人才推进计划—中青年科技创新领军人才

2014~ Elsevier高被引中国学者

2014 河南省科技进步二等奖

2013 吴仲华优秀青年学者奖

2011 国家海外高层次人才引进计划--青年项目(首批)

2008 美国能源部J. Robert Oppenheimer Fellowship Award

2008 教育部自然科学一等奖

2006 教育部全国优秀博士论文(提名奖)

2004 清华大学“学术新秀”奖(全校共8名)、优秀博士论文及优秀博士毕业生(全校共20名)

学术成果

在力学及传热传质领域顶级期刊JFM、JMPS、IJHMT、PRL等发表学术论文两百余篇,其中SCI收录论文百余篇,论文SCI引用超过 9000 次,H因子 47 (Web of Science, 截至2022年4月),Google Scholar总引用11000余次,H因子54;多次受邀在顶级权威学术期刊(包括 Surface Science Reports、Physics Reports、Materials Science and Engineering R: Reports和Progress in Materials Science等)发表专题综述。应主编邀请撰写英文书章节7章,合编英文专刊10余本,中文教材及工具书5本。授权的软件著作权及国内外发明专利20余项。在国际会议上作大会报告和邀请报告30余次。

全部论文:ResearcherID

Google Scholar

代表性论文

微尺度气体流动(selected 5)

• Y. Wang, S. Nolte, G. Gaus, Z. Tian, A. Amann-Hildenbrand, B. Krooss, M. Wang*. An early-time solution of pulse-decay method for permeability measurement of tight rocks. Journal of Geophysical Research-Solid Earth 126: e2021JB022422, 2021

• Z.Y. Wang, M. Wang* S. Chen. Coupling of high-Knudsen and non-ideal gas effects in microporous media. Journal of Fluid Mechanics 840: 56-73, 2018

•M. Wang, X. Lan and Z. Li*. Analysis of Gas flows in Micro- and Nanochannels. Int. J. Heat Mass Transfer. 51(13-14): 3630-3641, 2008

•M. Wang, Z. Li*. Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method. Int. J. Heat Fluid Flow, 25(6): 975-985, 2004

•M. Wang *, Z. Li. Nonideal gas flow and heat transfer in micro- and nanochannels using the direct simulation Monte Carlo method. Physical Review E. 68: 046704, 2003

微尺度液体流动与电动输运(selected 5)

• A. Alizadeh and M. Wang*. Flexibility of inactive electrokinetic layer at charged solid-liquid interface in response to bulk ion concentration Journal of Colloid and Interface Science 534: 195-204, 2019

•L. Zhang, M.A. Hesse and M. Wang. Transient solute transport with sorption in Poiseuille flow. Journal of Fluid Mechanics 828: 733-752, 2017

•J. Liu, M. Wang, S. Chen and M. Robbins*. Uncovering Molecular Mechanisms of Electrowetting and Saturation with Simulations. Physical Review Letters. 108: 216101, 2012

•M. Wang* and Q. Kang. Electrokinetic transport in microchannels with random roughness. Analytical Chemistry 81 (8), 2953-2961, 2009

•M. Wang*, and S. Chen. Electroosmosis in homogeneously charged micro- and nanoscale random porous media. Journal of Colloid and Interface Science 314(1): 264-273, 2007

微尺度多相流动(selected 5)

• F.L. Liu and M. Wang*. Phase Diagram for Preferential Flow in Dual Permeable Media. Journal Fluid Mechanics 948: A19, 2022

• F.L. Liu and M. Wang*. Trapping Patterns during Capillary Displacements in Disordered Media. Journal Fluid Mechanics 933: A52, 2022

• W. Lei, X.K. Lu, F.L. Liu, and M. Wang*. Nonmonotonic wettability effects on displacement in heterogeneous porous media. JFM-Rapids, 2022

• C.Y. Xie, W. Lei, M. Balhoff, M. Wang* and S. Chen. Self-adaptive preferential flow control using displacing fluid with dispersed polymers in heterogeneous porous media. Journal Fluid Mechanics 906: A10, 2021 (cover page)

• C.Y. Xie, J. Zhang, V. Bertola, M. Wang*. Lattice Boltzmann Modeling for Multiphase Viscoplastic Fluid Flow. Journal of Non-Newton Fluid Mechanics 234: 118-128, 2016

微孔介质多物理化学耦合输运(selected 5)

• Y.K. Yang, X.D. Zhang, Z.G. Tian, G. Deissmann, D. Bosbach, P. Liang* and M. Wang*. Ionic Thermodiffusion in Nanoconfined Aqueous Electrolytes. Journal of Colloid and Interface Science 619: 331-338, 2022

• A. Alizadeh, X. Jin and M. Wang*. Pore-scale Study of Ion Transport Mechanisms in Inhomogeneously Charged Nanoporous Rocks: Impact of Interface Properties on Macroscopic Transport. Journal of Geophysical Research-Solid Earth 124: 017200, 2019

•L. Zhang and M. Wang*. Electro-osmosis in inhomogeneously charged microporous media by pore-scale modeling. Journal of Colloid and Interface Science. 486: 219-231, 2017

•L. Zhang, M. Wang*. Modeling of electrokinetic reactive transports using a coupled lattice Boltzmann method. Journal of Geophysical Research-Solid Earth. 120: 2877-2890, 2015

•M. Wang*, Q. Kang, H. Viswanathan and B. Robinson. Modeling of electro-osmosis of dilute electrolyte solutions in silica microporous media. J. Geophysical Research-Solid Earth 115: B10205, 2010

量子流体力学理论 (selected 5)

• W.L. Miao, M. Wang*. Nonequilibrium effects on electron-phonon coupling constant in metals. Physical Review B 103: 125412, 2021

• Y.F. Huang and M. Wang*. Nonnegative magnetoresistance in hydrodynamic regime of electron fluid transport in two-dimensional materials. Physical Review B 104: 155408, 2021

• Y. Guo, M. Wang*. Phonon hydrodynamics for nanoscale heat transport at ordinary temperature. Physical Review B 97: 035421, 2018

• Y. Guo, D. Jou, M. Wang*. Nonequilibrium thermodynamics of phonon hydrodynamic model for nanoscale heat transport. Physical Review B 2018

• Y. Guo, M. Wang*. Heat transport in two-dimensional materials by directly solving phonon Boltzmann equation under Callaway’s dual relaxation model. Physical Review B 96: 134312, 2017

微尺度能量渗流 (selected 5)

•C. Xie, J. Wang N. Pan, D. Wang and M. Wang*. Lattice Boltzmann modeling of thermal conduction in composite materials with thermal contact resistance. Communications in Computational Physics. 17: 1037-1055, 2015

•M. Wang*, X. Wang, J.K. Wang and N. Pan. Grain size effects on effective thermal conductivity of porous materials with internal thermal contact resistance. Journal Porous Media. 16(11): 1043-1048, 2013

•M. Wang*, N. Pan. Modeling and prediction of the Effective Thermal Conductivity of Random Open-cell Porous Foams. Int. J. Heat Mass Transfer. 51(5-6): 1325-1331, 2008

•M. Wang, J. He, J. Yu and N. Pan. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials. Intentional Journal of Thermal Sciences 46(9): 848-855, 2007

•M. Wang*, J. Wang, N. Pan, and S. Chen. Mesoscopic Predictions of the Effective Thermal Conductivity of Microscale Random Porous Media. Physical Review E. 75: 036702, 2007

热力学分析及优化(selected 5)

•Y. Guo, M. Wang*. Thermodynamic analysis of gas flow and heat transfer in microchannels. International Journal of Heat and Mass Transfer 103: 773-782, 2016

•Y. Guo, Z. Y. Wang, M. Wang*. Thermodynamic extreme principles for non-equilibrium stationary state in heat conduction. Journal of Heat Transfer 139(7): 071303, 2017

•X. Shan, M. Wang* and Z. Guo. Geometry optimization of self-similar transport network. Mathematical Problems in Engineering. 2011: 421526, 2011

•X. Liu, M. Wang*, J. Meng, E. Ben-Naim and Z. Guo. Minimum dissipation principle for the optimization of transport networks. International Journal of Non-linear Science and Numerical Simulations 11(2): 113-120, 2010

•Q. Chen, M. Wang*, N. Pan, and Z. Guo. Optimization principles for convective heat transfer enhancement. Energy. 34(9): 1199-1206, 2009

页岩油/气勘探开发中的输运(selected 5)

• C.Y. Xie, W. Lv, and M. Wang*. Shear-thinning or Shear-thickening Fluid for Better EOR? — A Direct Pore-scale Study. Journal of Petroleum Science and Engineering 161: 683-691, 2018

• Q. Lv, Z. Chen and M. Wang*. An improved elastic-tube model for the correlation of permeability and stress with correction for the Klinkenberg effect. Journal of Natural Gas Science and Engineering 48: 24-35, 2017

• J. Zheng, Z. Wang, W. Gong, Y. Ju and M. Wang*. Morphology effects of shale nanopores on gas permeability using lattice Boltzmann modeling. Journal of Natural Gas Science and Engineering 47: 83-90, 2017

• Z.Y. Wang, X. Jin, X. Wang, L. Sun, M. Wang*. Pore-scale geometry effects on gas permeability in shale. Journal of Natural Gas Science and Engineering 34: 948-957, 2016

• Z.Y. Wang, Y.Y. Guo, M. Wang*. Permeability of high-Kn real gas flow in shale and production prediction by pore-scale modeling. Journal of Natural Gas Science and Engineering 28: 328-337, 2016

放射性废物防护中的输运(selected 5)

• Y.K. Yang and M. Wang*. Electrodiffusion of cations in compacted clay: a pore-scale view. Environmental Science & Technology 53(4): 1976-1984, 2019

• T. Wu*,#, Y.K. Yang#, Z. Wang, Y.H. Tong, M. Wang*. Enhance of anion diffusion caused by the smectite illitization. Water Resource Research. 56(11): e2019WR027037, 2020

• Y.K. Yang, R.A. Patel, S.V. Churakov*, N.I. Prasianakis, G. Kosakowski and M. Wang *. Multiscale modeling of ion diffusion in cement paste: electrical double layer effects. Cement and Concrete Composites 96: 55-65, 2019

• Y.K. Yang, M. Wang *. Pore-scale study of thermal effects on ion diffusion in clay with inhomogeneous surface charge. Journal of Colloid and Interface Science 514: 443-451, 2018

• Y. Yang, X.T. He, M. Li and M. Wang *. Pore-scale modeling of chloride ionic diffusion in cement microstructures. Cement and Concrete Composites 85: 92-104, 2018

流-固-热耦合输运(selected 5)

• Z.Q. Chen, D. Elsworth and M. Wang*. Does low-viscosity fracturing always create complex fractures? Journal of Geophysical Research-Solid Earth 125(9): e2020JB020332, 2020

• Z. Chen, X. Jin and M. Wang*. A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks. Journal of the Mechanics and Physics of Solids 116: 54-69, 2018

• Z. Chen, Z. Yang and M. Wang*. Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures. Journal of Petroleum Science and Engineering 163: 421-434, 2018

• Z. Chen and M. Wang*. Pore-scale modeling of hydro-mechanical coupling mechanics in hydro-fracturing. Journal of Geophysical Research-Solid Earth 122: JB013989, 2017

• Y. Chen, Q. Kang, Q. Cai*, M. Wang*, D. Zhang. Lattice Boltzmann simulations of particle motion in binary immiscible fluids Communication in Computational Physics 18(3): 757-786, 2015

跨尺度模拟(selected 5)

• Z.Y. Wang, M. Wang* S. Chen. Coupling of high-Knudsen and non-ideal gas effects in microporous media. Journal of Fluid Mechanics 840: 56-73, 2018

• Y.K. Yang, M. Wang*. Upscaling scheme for long-term ion electrodiffusion in microporous media. Physical Review E 96: 023308, 2017

• C.Y. Xie, A.Q. Raeini, Y. Wang, M. Blunt*, M. Wang*. An improved pore-network model with viscous coupling effect via direct simulation by lattice Boltzmann method. Advances in Water Resources. 100: 26-34, 2017

• G. Liu, J. Zhang and M. Wang*. Drop movements and replacement on surface driven by shear force via hybrid atomistic-continuum simulations. Molecular Simulation. 42(10): 855-862, 2016

• S. Chen*, M. Wang, and Z. Xia. Multiscale fluid mechanics and modeling. Procedia IUTAM 10: 100-114, 2014

介尺度高效算法(selected 5)

• X. Ran, M. Wang*. Efficiency improvement of discrete-ordinates method for interfacial phonon transport by Gauss-Legendre integral for frequency domain. Journal of Computational Physics 399: 108920, 2019

• Y. Guo, M. Wang*. Lattice Boltzmann modeling of phonon transport. Journal of Computational Physics 315: 1-15, 2016

• M. Wang*, and Q. Kang. Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods. Journal of Computational Physics, 229: 728-744, 2010

• M. Wang*, and N. Pan. Elastic property of multiphase composites with random microstructures. Journal of Computational Physics 228: 5978-5988, 2009

• M. Wang*, J. Wang, and S. Chen. Roughness and Cavitations effects on Electro-osmotic Flows in Rough Microchannels using the Lattice Poisson-Boltzmann Methods. Journal of Computational Physics. 226(1): 836-851, 2007

综述文章 (selected 5)

•M. Wang, N. Pan. Predictions of Effective Physical Properties of Complex Multiphase Materials. Material Science and Engineering-R: Reports. 63(1): 1-30, 2008 [约稿当年IF=17.731]

• X. Wang, B. Ding, G. Sun, M. Wang and J. Yu. Electro-spinning/netting. Progress in Materials Science.58: 1173-1243, 2013 [约稿当年IF =25.87]

• Y. Guo, M. Wang. Phonon hydrodynamics and its applications in nanoscale heat transport. Physics Reports. 595: 1-44, 2015 [约稿当年IF =22.91]

• H. Tian, M. Wang. Electrokinetic mechanisms of wettability alternation at oil-water-rock interface. Surface Science Reports 72: 369-391, 2017 [约稿当年IF =17.8]

• W. Lei, X.K. Lu and M. Wang*. Multiphase displacement mechanism by micro/nanoparticle suspension in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Advances in Colloid and Interface Science 311: 102826, 2023 [约稿当年IF=15.19]

Baidu
sogou