Lagrangian and vortex-surface fields in turbulence

Yue Yang

Sibley School of Mechanical and Aerospace Engineering, Cornell University

Combustion Research Facility, Sandia National Laboratories

Abstract

In this study, we focus on Lagrangian investigations of isotropic turbulence, wall-bounded turbulence, and vortex dynamics. In particular, the evolutionary multi-scale geometry of Lagrangian structures is quantified and analyzed. Additionally, we also study the dynamics of vortex-surface fields for some simple viscous flows with both Taylor-Green and Kida-Pelz initial conditions.

First, we study the non-local geometry of finite-sized Lagrangian structures in both stationary, evolving homogenous isotropic turbulence and also with a frozen turbulent velocity field. The multi-scale geometric analysis is applied on the evolution of Lagrangian fields, obtained by a backward-particle-tracking method, to extract Lagrangian structures at different length scales and to characterize their non-local geometry in a space of reduced geometrical parameters. Next, we report a geometric study of both evolving Lagrangian, and also instantaneous Eulerian structures in turbulent channel flow at low and moderate Reynolds numbers. A multi-scale and multi-directional analysis, based on the mirror-extended curvelet transform, is developed to quantify flow structure geometry including the averaged inclination and sweep angles of both classes of turbulent structures at multiple scales ranging from the half-height of the channel to several viscous length scales. Results for turbulent channel flow include the geometry of candidate quasi-streamwise vortices in the near-wall region, the structural evolution of near-wall vortices, and evidence for the existence and geometry of structure packets based on statistical inter-scale correlations.

In order to explore the connection and corresponding representations between Lagrangian kinematics and vortex dynamics, we develop a theoretical formulation and numerical methods for computation of the evolution of a vortex-surface field. Iso-surfaces of the vortex-surface field define vortex surfaces. A systematic methodology is developed for constructing smooth vortex-surface fields for initial Taylor-Green and Kida-Pelz velocity fields by using an optimization approach. Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and viscous incompressible flows. Numerical results on the evolution of vortex-surface fields clarify the continuous vortex dynamics in viscous Taylor-Green and Kida-Pelz flows including the vortex reconnection, rolling-up of vortex tubes, vorticity intensification between anti-parallel vortex tubes, and vortex stretching and twisting. This suggests a possible scenario for explaining the transition from a smooth laminar flow to turbulent flow in terms of topology and geometry of vortex surfaces.

Time:10:00-11:30,September 11th,2012

Venue:1512#,YiFu Technology and Science Building


Baidu
sogou