A. Extreme compressible two-phase flow mathematical modelling and physical mechanism
Sheng, X.; Fan, W.; Wu, W.; Wen, H.; Wang, B.*; 2023. Analysis of Wave Converging Phenomena inside the Shocked Two-Dimensional Cylindrical Water Column, Journal of Fluid Mechanics, 964. https://doi.org/10.1017/jfm.2023.239
王兵; 范文琦; 徐胜; 高瞻; 2022. 极端条件两相界面流与反应流机理、模型与算法研究进展, 气体物理, 7(06): 1-32. https://doi.org/10.19527/j.cnki.2096-1642.0941
Jin, X.; Cheng, X.; Wang, Q.; Wang, B.; 2022. Numerical simulation for rarefied hypersonic flows over non-rectangular deep cavities, Physics of Fluids, 34(8). https://doi.org/10.1063/5.0102685
吴汪霞; 王兵; 王晓亮; 刘青泉; 2021. 非等强度多道冲击波作用下空泡溃灭机制分析, 航空学报, 40(12): 625894-625894. https://doi.org/10.7527/S1000-6893.2021.25894
Gao, Z.; Wu, W.; Wang, B.*; 2021. The effects of nanoscale nuclei on cavitation, Journal of Fluid Mechanics, 911, A20. https://doi.org/10.1017/jfm.2020.1049
Gao, Z.; Wu, W.; Sun, W.; Wang, B.*; 2021. Understanding the stabilization of a bulk nanobubble: a molecular dynamics analysis, Langmuir, 37(38), 11281-11291. https://doi.org/10.1021/acs.langmuir.1c01796(封面文章)
Wu, W.; Liu, Q.; Wang, B.; 2021. The effects of nanoscale nuclei on cavitation, 25th International Congress of Theoretical and Applied Mechanics - ICTAM, 2020+1, Milan, Italy, on August 22-27, 2021.
Wu, W.; Liu, Q.; Wang, B.*; 2021. Curved surface effect on high-speed droplet impingement, Journal of Fluid Mechanics, 909, A7. https://doi.org/10.1017/jfm.2020.926
Wu, W.; Wang, B.; Liu, Q.*; 2021. Tandem cavity collapse in a high-speed droplet impinging on a 180° constrained wall, Journal of Fluid Mechanics, 932, A52. https://doi.org/10.1017/jfm.2021.1044.
Xiang, G.; Ren, Z.; Kim, S.; Wang, B.*; 2020. Numerical analysis on the disintegration of gas-liquid interface in two-phase shear-layer flows, Aerospace Science and Technology, 98, 105710. https://doi.org/10.1016/j.ast.2020.105710
Wu, W.; Wang, B.*; Xiang, G.; 2019. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis, Journal of Fluid Mechanics, 864, 1058–1087. https://doi.org/10.1017/jfm.2019.55
Xiang, G.; Wang, B.*; 2019. Theoretical and numerical studies on shock reflection at water/air two-phase interface: fast-slow case, International Journal of Multiphase Flow, 114, 219–228. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.002
Zhang, C.; Xiang, G.M.; Wang, B.; Hu, X.Y.*; Adams, N.A.; 2019. A weakly compressible SPH method with WENO reconstruction, Journal of Computational Physics, 392, 1–18. https://doi.org/10.1016/j.jcp.2019.04.038
Herty, M.; Müller, S.*; Gerhard, N.; Xiang, G.; Wang, B.; 2018. Fluid-structure coupling of linear elastic model with compressible flow models, International Journal for Numerical Methods in Fluids, 86, 365–391. https://doi.org/10.1002/fld.4422
Wang, B.; Xiang, G.; Hu, X.Y.*; 2018. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows, International Journal of Multiphase Flow, 104, 20–31. https://doi.org/10.1016/j.ijmultiphaseflow.2018.03.013
Wu, W.; Xiang, G.; Wang, B.*; 2018. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects, Journal of Fluid Mechanics, 857, 851–877. https://doi.org/10.1017/jfm.2018.753
Xiang, G.; Wang, B.*; 2018. Numerical investigation on the interaction of planar shock wave with an initial ellipsoidal bubble in liquid medium, AIP Advances, 8, 075128. https://doi.org/10.1063/1.5047570(编辑精选)
Xiang, G.; Wang, B.*; 2017. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity, Journal of Fluid Mechanics, 825, 825–852. https://doi.org/10.1017/jfm.2017.403
Zhang, P.; Wang, B.*; 2017. Effects of elevated ambient pressure on the disintegration of impinged sheets, Physics of Fluids, 29, 042102. https://doi.org/10.1063/1.4981777
Hu, X.Y.*; Wang, B.; Adams, N.A.; 2015. An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme, Journal of Computational Physics, 301, 415–424. https://doi.org/10.1016/j.jcp.2015.08.043
B.Extreme reactive flow mechanism and dynamics
Chen, Q.*; Wang B.*; 2021. The spatial growth of supersonic reacting mixing layers: Effects of combustion mode, Aerospace Science and Technology, 116, 106888. https://doi.org/10.1016/j.ast.2021.106888.
Shahsavari, M.; Wang, B.*; Zhang, B.; Jiang, G.; Zhao, D.; 2021. Response of supercritical round jets to various excitation modes, Journal of Fluid Mechanics, 915, A47. https://doi.org/10.1017/jfm.2021.78
Ren, Z.; Wang, B.*; Xiang, G.; Zhao, D.; Zheng, L.; 2019. Supersonic spray combustion subject to scramjets: progress and challenges, Progress in Aerospace Sciences, 105, 40–59. https://doi.org/10.1016/j.paerosci.2018.12.002
Ren, Z.; Wang, B.*; Zhang, F.; Zheng, L.; 2019. Effects of eddy shocklets on the segregation and evaporation of droplets in highly compressible shear layers, AIP Advances, 9, 125101. https://doi.org/10.1063/1.5125121
Ren, Z.; Wang, B.*; Hu, B.; Zheng, L.; 2018. Numerical analysis of supersonic flows over an aft-ramped open-mode cavity, Aerospace Science and Technology, 78, 427–437. https://doi.org/10.1016/j.ast.2018.05.003
Ren, Z.; Wang, B.*; Zhao, D.; Zheng, L.; 2018. Flame propagation involved in vortices of supersonic mixing layers laden with droplets: Effects of ambient pressure and spray equivalence ratio, Physics of Fluids, 30, 106107. https://doi.org/10.1063/1.5049840
Ren, Z.; Wang, B.*; Zheng, L.; 2018. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets, Physics of Fluids, 30, 036101. https://doi.org/10.1063/1.5011708 (特色文章)
Ren, Z.; Wang, B.*; Zheng, L.; Zhao, D.; 2018. Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor, Chinese Journal of Aeronautics, 31, 1870–1879. https://doi.org/10.1016/j.cja.2018.06.020
Ren, Z.; Wang, B.*; Xie, Q.; Wang, D.; 2017. Thermal auto-ignition in high-speed droplet-laden mixing layers, Fuel, 191, 176–189. https://doi.org/10.1016/j.fuel.2016.11.073
Ren, Z.; Wang, B.*; Yang, S.; Xie, Q.; Liu, H.; Wang, D.; 2017. Evolution of flame kernel in one eddy turnover of high-speed droplet laden shear layers, Journal of Loss Prevention in the Process Industries, 49, 938–946. https://doi.org/10.1016/j.jlp.2017.05.009
Wang, B.*; Wei, W.; Zhang, Y.; Zhang, H.; Xue, S.; 2015. Passive scalar mixing in Mc <1 planar shear layer flows, Computers & Fluids, 123, 32–43. https://doi.org/10.1016/j.compfluid.2015.09.006
Zhang, Y.; Wang, B.*; Zhang, H.; Xue, S.; 2015. Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves, Journal of Propulsion and Power, 31, 156–169. https://doi.org/10.2514/1.B35423
C.Continuous rotating detonation and oblique detonation
Wen, H.; Fan, W.; Xu, S.; Wang, B.*; 2023. Numerical Study on Droplet Evaporation and Propagation Stability in Normal-Temperature Two-Phase Rotating Detonation System, Aerospace Science and Technology, 138. https://doi.org/10.1016/j.ast.2023.108324
Yan, C.; Nie, W.; Wang, B.; Lin, W.*; 2023. Rotating Detonation Combustion of Liquid Kerosene under near-Ramjet Limit Conditions, AIP Advances, 13(6). https://doi.org/10.1063/5.0157988
Wen, H.; Fan, W.; Wang, B.*; 2023. Theoretical analysis on the total pressure gain of rotating detonation systems, Combustion and Flame, 248. https://doi.org/10.1016/j.combustflame.2022.112582
Ren, Z.; Sun, Y.; Wang B.*; 2022. Propagation behaviors of the rotating detonation wave in kerosene-air two-phase mixtures with wide equivalence ratios, Flow Turbulence and Combustion, 110, 735-753. https://doi.org/10.1007/s10494-022-00393-z
Wen, H.; Wei, W.; Fan, W.; Xie, Q.; Wang, B.*; 2022. On the propagation stability of droplet-laden two-phase rotating detonation waves. Combustion and Flame, 244. https://doi.org/10.1016/j.combustflame.2022.112271
Zhang, B.; Shahsavari, M.; Chen, J.; Wen, H.; Wang, B.; Tian, X.; 2022. The propagation characteristics of particle-laden two-phase detonation waves in pyrolysis mixtures of C(s)/H2/CO/CH4/O2/N2, Aerospace Science and Technology, 130. https://doi.org/10.1016/j.ast.2022.107912
师迎晨; 张任帅; 计自飞; 王兵; 2022. 高速飞行器的连续旋转爆震推进技术, 空气动力学学报, 40(01): 101-113.
Ji, Z.; Zhang, B.; Zhang, H.; Wang, B.*; Wang, C.; 2022. Reduction of feedback pressure perturbation for rotating detonation combustors, Aerospace Science and Technology, 126, 1070635. https://doi.org/10.1016/j.ast.2022.107635
Zhang, B.; Chen, J.; Shahsavari, M.; Wen, H.; Wang, B.; Tian, X.; 2022. Effects of Inert Dispersed Particles on the Propagation Characteristics of a H2/Co/Air Detonation Wave, Aerospace Science and Technology, 126, 107660. https://doi.org/10.1016/j.ast.2022.107660
王兵, 谢峤峰, 闻浩诚, 滕宏辉, 张义宁 周林 2021. 爆震发动机研究进展, 推进技术, 42(04): 721-737+716.
Ji, Z.; Zhang, H.; Wang, B.*; 2021. Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine, Aerospace Science and Technology 113, 106694. https://doi.org/10.1016/j.ast.2021.106694.
Ren, Z.; Wang, B.*; Zheng, L.; 2021. Wedge-induced oblique detonation waves in supersonic kerosene-air premixing flows with oscillating pressure, Aerospace Science and Technology, 110. https://doi.org/10.1016/j.ast.2020.106472
Ren, Z.,; Wang, B.*; Wen, J.; Zheng, L.; 2021. Stabilization of wedge-induced oblique detonation waves in pre-evaporated kerosene–air mixtures with fluctuating equivalence ratios, Shock Waves, 31(7), 727-739. https://doi.org/10.1007/s00193-021-01050-6
Ji, Z.; Duan, R.; Zhang, R.; Zhang, H.; Wang, B.*; 2020. Comprehensive performance analysis for the rotating detonation-based turboshaft engine, International Journal of Aerospace Engineering, 9587813. https://doi.org/10.1155/2020/9587813
Ji, Z.; Zhang, H.; Wang, B.*; He, W.; 2020. Comprehensive performance analysis of the turbofan with a multi-annular rotating detonation duct burner, Journal of Engineering for Gas Turbines and Power-Transactions 142(2), 021007. https://doi.org/10.1115/1.4045518
Ma, J.; Luan, M.; Xia, Z..; Wang, J.*; Zhang, S.; Yao, S.; Wang, B.; 2020. Recent progress, development trends, and consideration of continuous detonation engines, AIAA Journal, 58(12), 4976-5035. https://doi.org/10.2514/1.J058157
Ren, Z.; Wang, B.*; 2020. Numerical study on stabilization of wedge-induced oblique detonation waves in premixing kerosene-air mixtures, Aerospace Science and Technology, 107, 106245. https://doi.org/10.1016/j.ast.2020.106245
Wang, B.; Wang, J.; 2020. Introduction to the special section on recent progress on rotating detonation and its application, AIAA Journal, 58(12), 4974-4975. https://doi.org/10.2514/1.J060144
Wen, H.; Wang, B.*; 2020. Experimental study of perforated-wall rotating detonation combustors, Combustion and Flame, 213, 52-62. https://doi.org/10.1016/j.combustflame.2019.11.028
He, W.; Xie, Q.; Ji, Z.; Rao, Z.; Wang, B.*; 2019. Characterizing continuously rotating detonation via nonlinear time series analysis, Proceedings of the Combustion Institute, 37, 3433–3442. https://doi.org/10.1016/j.proci.2018.07.045
Ji, Z.; Zhang, H.; Wang, B.*; 2019. Performance analysis of dual-duct rotating detonation aero-turbine engine, Aerospace Science and Technology, 92, 806–819. https://doi.org/10.1016/j.ast.2019.07.011
Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2019. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene–air mixtures, Proceedings of the Combustion Institute, 37, 3627–3635. https://doi.org/10.1016/j.proci.2018.08.038
Wen, H.; Xie, Q.; Wang, B.*; 2019. Propagation behaviors of rotating detonation in an obround combustor, Combustion and Flame, 210, 389–398. https://doi.org/10.1016/j.combustflame.2019.09.008
Xie, Q.; Wang, B.*; Wen, H.; He, W.; 2019. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition, Journal of Propulsion and Power, 35, 141–151. https://doi.org/10.2514/1.B37044
Xie, Q.; Wang, B.*; Wen, H.; He, W.; Wolanski, P.; 2019. Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air, Proceedings of the Combustion Institute, 37, 3425–3432. https://doi.org/10.1016/j.proci.2018.08.046
Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2018. Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation, Journal of Fluid Mechanics, 846, 411–427. https://doi.org/10.1017/jfm.2018.289
Xie, Q.; Wen, H.; Li, W.; Ji, Z.; Wang, B.*; Wolanski, P.; 2018. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition, Energy, 151, 408–419. https://doi.org/10.1016/j.energy.2018.03.062
Zheng, D.; Wang, B.*; 2018. Utilization of nonthermal plasma in pulse detonation engine ignition, Journal of Propulsion and Power, 34, 539–549. https://doi.org/10.2514/1.B36591
D.Combustion instability mechanisms, modelling and control
Rao, Z.; Li, R.; Zhao, P.; Wang, B.*; Zhao, D.; Xie, Q.; 2022. Similarity phenomena of lean swirling flames at different bulk velocities with acoustic disturbances, Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2022.07.001
Saqib Akhtar, M.; Shahsavari, M.; Ghosh, A.; Wang, B.*; Hussain, Z.; Rao, Z.; 2023. Effect of fuel reactivity on flame properties of a low-swirl burner, Experimental Thermal and Fluid Science, 142. https://doi.org/10.1016/j.expthermflusci.2022.110795
Li, W.; Zhao, D.*; Chen,X.; Sun, Y.; Ni, S.; Guan, D.;Wang, B.; 2021. Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability, Aerospace Science and Technology, 119, 107097. https://doi.org/10.1016/j.ast.2021.107097
Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Akhtar, M.S.; 2021. Experimental investigations of equivalence ratio effect on nonlinear dynamics features in premixed swirl-stabilized combustor, Aerospace Science and Technology, 112,106601. https://doi.org/10.1016/j.ast.2021.106601
Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Shahsavari, M.; 2021. Nonlinear dynamics of a swirl-stabilized combustor under acoustic excitations: influence of the excited combustor natural mode oscillations, Flow, Turbulence and Combustion, 107, 683-708. https://doi.org/10.1007/s10494-021-00249-y
Shahsavari, M.*; Farshchi, M.; Arabnejad, M.H.; Wang, B.; 2021. The role of flame–flow interactions on lean premixed lifted flame stabilization in a low swirl flow, Combustion Science and Technology, 1-26. https://doi.org/10.1080/00102202.2021.1976766
Zhang, B.;Shahsavar, M.; Rao, Z.; Yang, S.; Wang, B.*; 2021. Thermoacoustic Instability Drivers and Mode Transitions in a Lean Premixed Methane-Air Combustor at Various Swirl Intensities, Proceedings of the Combustion Institute, 38(4): 6115-6124. https://doi.org/10.1016/j.proci.2020.06.226
Ji, S.; Wang, B.*; Zhao, D.; 2020. Numerical analysis on combustion instabilities in end-burning-grain solid rocket motors utilizing pressure-coupled response functions, Aerospace Science and Technology, 98, 105701. https://doi.org/10.1016/j.ast.2020.105701
Qin, J.; Zhou, L.; Zhang, H.*; Wang, B.; 2020. Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators, Science China-Technological Sciences, 64, 375-386. https://doi.org/10.1007/s11431-019-1575-6
Sun, Y.; Rao, Z.; Zhao, D.*; Wang, B.; Sun, D.; Sun, X.; 2020. Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor, Applied Energy, 264, 114698. https://doi.org/10.1016/j.apenergy.2020.114698
Zhang, B.; Shahsavari, M.; Rao, Z.; Li, R.; Yang, S.; Wang, B.*; 2020. Effects of the fresh mixture temperature on thermoacoustic instabilities in a lean premixed swirl-stabilized combustor, Physics of Fluids, 32, 047101. https://doi.org/10.1063/1.5133859
Ji, S.; Wang, B.*; 2019. Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motor, Aerospace Science and Technology, 95, 105409. https://doi.org/10.1016/j.ast.2019.105409
Shahsavari, M.*; Farshchi, M.; Chakravarthy, S.R.; Chakraborty, A.; Aravind, I.B.; Wang, B.; 2019. Low swirl premixed methane-air flame dynamics under acoustic excitations, Physics of Fluids, 31, 095106. https://doi.org/10.1063/1.5118826 (Editor's Pick)
Zhang, B.; Shahsavari, M.; Rao, Z.; Yang, S.; Wang, B.; 2019. Contributions of hydrodynamic features of a swirling flow to thermoacoustic instabilities in a lean premixed swirl stabilized combustor, Physics of Fluids, 31, 075106. https://doi.org/10.1063/1.5108856 (Editor's Pick)
Qin, J.; Zhang, H.; Wang, B.*; 2018. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model, Chinese Journal of Aeronautics, 31, 470–480. https://doi.org/10.1016/j.cja.2018.01.007
Qian, C.; Bing, W.*; Huiqiang, Z.; Yunlong, Z.; Wei, G.; 2016. Numerical investigation of H2/air combustion instability driven by large scale vortex in supersonic mixing layers, International Journal of Hydrogen Energy, 41, 3171–3184. https://doi.org/10.1016/j.ijhydene.2015.11.029
E.Other
Jin, X.; Cheng, X.; Wang, Q.; Wang, B.*; 2023. Numerical Analysis of Rarefied Hypersonic Flows over Inclined Cavities, International Journal of Heat and Mass Transfer, 214. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124401
Jin, X.*; Wang, B.; 2023. Numerical investigation of the effects of axial temperature gradient and cooling rate on InGaSb crystal growth under microgravity, Journal of Crystal Growth, 607. https://doi.org/10.1016/j.jcrysgro.2023.127110
Liu, Y.; Zhang, Q.*; Zhang, H.; Wang, B.; 2022. Numerical investigation on the performance of internal flow and atomization in the recessed gas-centered swirl coaxial injectors, Aerospace Science and Technology, 129. https://doi.org/10.1016/j.ast.2022.107858
Cai, T.; Backer, S.M.; Cao, F.; Wang, B.; Tang, A.; Fu, J.; Han, L.; Sun, Y.; Zhao, D.*; 2021. NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system, Chemical Engineering Journal, 417, 128033. https://doi.org/10.1016/j.cej.2020.128033
Cai, T.; Zhao, D.*; Sun, Y.; Ni, S.; Li, W.; Guan, D.; Wang, B.; 2021. Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate, Renewable and Sustainable Energy Reviews, 145, 111150. https://doi.org/10.1016/j.rser.2021.111150
Chen, Z.; Huang, F.; Jin, X.*; Cheng, X.; Wang, B.; 2021. A novel lightweight aerodynamic design for the wings of hypersonic vehicles cruising in the upper atmosphere, Aerospace Science and Technology, 109, 106418. https://doi.org/10.1016/j.ast.2020.106418
Jin, X.; Huang, F.; Miao, W.; Cheng, X.; Wang, B.; 2021. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity, Physics of Fluids, 33, 036116. https://doi.org/10.1063/5.0045056
Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2021. Effects of corner rounding on aerothermodynamic properties in rarefied hypersonic flows over an open cavity, Aerospace Science and Technology, 110, 106498. https://doi.org/10.1016/j.ast.2021.106498
Um, K.; Hu, X.; Wang, B.; Thuerey, N.; 2021. Spot the Difference: Accuracy of numerical simulations via the human visual system, ACM Transactions on Applied Perception, 18(2), 6:1-6:15. https://doi.org/10.1145/3449064
Sun, Y.; Cai, T.; Shahsavari, M.; Sun, D.; Sun, X.; Zhao, D.*; Wang, B.; 2021. RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model, Chinese Journal of Aeronautics, 34(12), 17-27. https://doi.org/10.1016/j.cja.2020.11.017
Cai, T.; Zhao, D.*; Wang, B.; Li, J.; Guan, Y.; 2020. NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor, Fuel, 280, 118554. https://doi.org/10.1016/j.fuel.2020.118554
Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2020. The effects of Maxwellian accommodation coefficient and free-stream Knudsen number on rarefied hypersonic cavity flows, Aerospace Science and Technology, 97, 105577. https://doi.org/10.1016/j.ast.2019.105577
Jin, X.; Huang, F.; Cheng, X.; Wang, Q.; Wang, B.*; 2019. Monte Carlo simulation for aerodynamic coefficients of satellites in low-earth orbit, Acta Astronautica, 160, 222–229. https://doi.org/10.1016/j.actaastro.2019.04.012
Rao, Z.; Luo, Y.; Wang, B.*; Xie, Q.; He, W.; 2019. Mitigation of H2/air gaseous detonation via utilization of PAN-based carbon fiber felt, International Journal of Hydrogen Energy, 44, 5054–5062. https://doi.org/10.1016/j.ijhydene.2018.12.196