[1] Pan J, Ren Y, Sun Y. High order sub-cell finite volume schemes for solving hyperbolic conservation laws II: Extension to two-dimensional systems on unstructured grids[J]. Journal of Computational Physics, 2017, 338: 165-198.
[2] Pan J, REN Y. High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2017
[3] Zhu Y, Sun Z, Ren YX, et al. A Numerical Strategy for Freestream Preservation of the High Order Weighted Essentially Non-oscillatory Schemes on Stationary Curvilinear Grids[J]. Journal of Scientific Computing, 2017, 1-28.
[4] Chen Z, Huang X, Ren YX, et al. General Procedure for Riemann Solver to Eliminate Carbuncle and Shock Instability[J]. AIAA Journal, 2017: 1-15.
[5] Wang Q, Ren Y X, Pan J, et al. Compact high order finite volume method on unstructured grids III: Variational reconstruction[J]. Journal of Computational Physics, 2017, 337: 1-26.
[6] Wang Q, Ren YX, Li W, Compact high order finite volume method on unstructured grids II: Extension to two-dimensional Euler equations[J]. Journal of Computational Physics, 2016, 314: 883-908
[7] Wang Q, Ren YX, Li W, Compact high order finite volume method on unstructured grids I: Basic formulations and one-dimensional schemes[J]. Journal of Computational Physics, 2016, 314: 863-882.
[8] Sun Y, Yu M, Jia Z, Ren YX, A cell-centered Lagrangian method based on local evolution Galerkin scheme for two-dimensional compressible flows[J]. Computers & Fluids, 2016, 128: 65-76.
[9] Sun Z, Ren YX, Zha B, et al. High Order Boundary Conditions for High Order Finite Difference Schemes on Curvilinear Coordinates Solving Compressible Flows[J]. Journal of Scientific Computing, 2015, 65(2): 790-820.
[10] Wang Q, Ren YX, An accurate and robust finite volume scheme based on the spline interpolation for solving the Euler and Navier–Stokes equations on non-uniform curvilinear grids[J]. Journal of Computational Physics, 2015, 284: 648-667.
[11] Sun Z, Ren YX, A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique[J]. Journal of Computational Physics, 2014, 270:238–254.
[12] Li W, Ren YX, The multi-dimensional limiters for discontinuous Galerkin method on unstructured grids[J]. Computers & Fluids, 2014, 96(11):368–376.
[13] Wang Q, Ren YX, Sun Z, et al. Low dispersion finite volume scheme based on reconstruction with minimized dispersion and controllable dissipation[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(2):423-431.
[14] Li W, Ren YX. High-order k -exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids[J]. International Journal for Numerical Methods in Fluids, 2012, 70(6):742–763.
[15] Li W, Ren YX, The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II: Extension to high order finite volume schemes[J]. Journal of Computational Physics, 2012, 231(11):4053–4077.
[16] Li W, Ren YX, Lei G, et al. The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids.[J]. Journal of Computational Physics, 2011, 230(21):7775–7795.
[17] Sun Z, Ren YX, Zhang S, et al. High-resolution finite difference schemes using curvilinear coordinate grids for DNS of compressible turbulent flow over wavy walls[J]. Computers & Fluids, 2011, 45(1):84–91.
[18] Sun Z, Ren YX, Larricq C, et al. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence[J]. Journal of Computational Physics, 2011, 230(12):4616–4635.
[19] Lei GD, Ren YX, Computation of the stability derivatives via CFD and the sensitivity equations[J]. Acta Mechanica Sinica, 2011, 27(2): 179-188.
[20] Sun Z, Ren YX, Larricq C. Drag reduction of compressible wall turbulence with active dimples[J]. Science China(Physics, 2011, 54(2):329-337.
[21] Sun Y, Ren YX, The finite volume local evolution Galerkin method for solving the hyperbolic conservation laws[J]. Journal of Computational Physics, 2009, 228(13):4945–4960.
[22] Ren YX, Evaluation of the Stability Derivatives Using the Sensitivity Equations[J]. AIAA Journal, 2008.
[23] Ren YX, Liu M, Zhang H. Implementation of the divergence-free and pressure-oscillation-free projection method for solving the incompressible Navier-Stokes equations on the collocated grids[J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2(4):746-759.
[24] Ren YX, Sun Y. A multi-dimensional upwind scheme for solving Euler and Navier–Stokes equations[J]. Journal of Computational Physics, 2006, 219(1):391–403.
[25] Tan, LH, Ren, YX, Wu ZN. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows [J]. Journal of Fluid Mechanics, 2006, 54:341-362.
[26] Ren YX, Tan LH, Gao B, Wu ZN. On the characteristics of the Mach stem [J]. Journal of Fluid Mechanics, 2005, 19(28-29):1511-1514.
[27] Ren YX, Jiang Y, Liu M, et al. A class of fully third-order accurate projection methods for solving the incompressible Navier-Stokes equations[J]. Acta Mechanica Sinica, 2005, 21(6):542-549.
[28] Liu M, Ren YX, Zhang H, A class of fully second order accurate projection methods for solving the incompressible Navier–Stokes equations[J]. Journal of Computational Physics, 2004, 200(1):325–346.
[29] Ren YX, Liu M, Zhang H, A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2):365–386.
[30] Ren YX, A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computers & Fluids, 2003, 32(10):1379–1403.